On the Tensor Svd and Optimal Low Rank Orthogonal Approximations of Tensors
نویسندگان
چکیده
Abstract. It is known that a high order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD) of a tensor. In face of these difficulties to generalize standard results known in the matrix case to tensors, we consider low rank orthogonal approximations of tensors. The existence of an optimal approximation is theoretically guaranteed under certain conditions, and this optimal approximation yields a tensor decomposition where the diagonal of the core is maximized. We present an algorithm to compute this approximation and analyze its convergence behavior.
منابع مشابه
On the Tensor SVD and the Optimal Low Rank Orthogonal Approximation of Tensors
It is known that a higher order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD). In face of these difficulties t...
متن کاملOrthogonal Rank-two Tensor Approximation: a Modified High-order Power Method and Its Convergence Analysis
With the notable exceptions that tensors of order 2, that is, matrices always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors can fail to have best low rank approximations. When the condition of orthogonality is imposed, even at the most general case that only one pair of components in...
متن کاملOrthogonal Low Rank Tensor Approximation: Alternating Least Squares Method and Its Global Convergence
With the notable exceptions of two cases — that tensors of order 2, namely, matrices, always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors may fail to have best low rank approximations. When the condition of orthogonality is imposed, even under the modest assumption that only one set...
متن کاملRandom Projections for Low Multilinear Rank Tensors
We proposed two randomized tensor algorithms for reducing multilinear ranks in the Tucker format. The basis of these randomized algorithms is from the randomized SVD of Halko, Martinsson and Tropp [9]. Here we provide randomized versions of the higher order SVD and higher order orthogonal iteration. Moreover, we provide a sharper probabilistic error bounds for the matrix low rank approximation....
متن کاملMulti-Level Cluster Indicator Decompositions of Matrices and Tensors
A main challenging problem for many machine learning and data mining applications is that the amount of data and features are very large, so that low-rank approximations of original data are often required for efficient computation. We propose new multi-level clustering based low-rank matrix approximations which are comparable and even more compact than Singular Value Decomposition (SVD). We ut...
متن کامل